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Symmetries of the Fokker-Planck equation and the Fisher-Frieden arrow of time

A. R. Plastino and A. Plastino
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We give here a concrete illustration of Frieden's arrow of time, connected with Fisher’'s information mea-
sure. It is shown that this arrow of time is related to symmetries of the Fokker-Planck equation.
[S1050-294{®6)05410-9

PACS numbds): 05.40:+j

I. INTRODUCTION

J W(x,t)dVx= 1, (2.2
In recent years, Frieden has shown that Fisher’'s informa-

tion measuréFIM) can be regarded as an important tool forx is a vector belonging t&N, and the FP operatd9] is

interesting developments in theoretical physif$-8].  given, in terms of a drift vecto¥, of component;(x,t)

Among them, one may cite the possible existence of an “arand of a diffusion tensob of component®;; (x,t), by (Ein-
row of time” associated to this information measure, whichstein convention used

following current usage we denote byIndeed, in discuss-
ing Brownian motion, Friedefi7] has put forward suggestive d
qualitative considerations regarding a putative FIM based LFP:_a_XiDi(X'thDij(X't)- 23
“H-theorem.”

Strongindirect evidence for the existence of an arrow of The D;;(x,t) matrix is assumed to be a symmetric positive
time has been put forward by FriedgR. (i) Assuming that  definite one, i.e.,
Fisher’sl decreases with time after a measurenment is made
implies thatl approaches a variational minimufi]. Thus Dijviv;= 0, (2.4
the information distance called € J) in [7] approaches an
extremum, WhiCh, in turn’ leads to the relativistic quantumfor all vectorsv in RN. It is convenient to introduce at this
mechanics formalisrEgs.(17)—(28) of Ref.[7]). (i) Under  point the adjoint operatdr ¢, defined according to
the same assumption, several important physical laws can be
rederived[1-7].

These logical developements constitute the motivation for
the present search fordirect demonstration of the existence
of a Fisher’s information-based arrow of time. As far as weGiven two probability distribution§V, andW,, ourL opera-
know, no analytical demonstration has been advanced shoiers verify
ing that, for a system governed by a given probability distri-
bution W(x,t), (dI/dt) possesses definitesign,_so that an f Wl(LFPWZ)dNX:f Wi (L W, ) dNx. 2.6)
H theorem ensues and, with it, an “arrow of time.” In this
report we show that the Fokker-Planck equation admits, un-
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J +D ”
i 6Xi ] (9Xi(9Xj '

Lip=D (2.9

der appropriate circumstances, of Fisher entrofies., Il. EISHER ENTROPIES WHOSE TEMPORAL
FIM’s) that verify anH theorem. Moreover, it is seen that DERIVATIVES HAVE A DEFINITE SIGN
Fisher entropies whose temporal derivatives have a definite ) ) ) )
sign are related to symmetries of the Fokker-PlaieR) Associated with any pair of solutionV,(x,t) and
equation. W,(x,t) to the Fokker-Planck equation, we introduce the
auxiliary quantityQ
Il. THE FOKKER-PLANCK OPERATOR
- N -1
We shall focus our attention on FP equati@$ Q J d XW%WZ ' @D
IW and immediately find
——=LepW, 2.
ot
dQ N + p2\A4N
. . e — =2 | R(LgpWDd™X— | Wy(LgpR%)d %, (3.2
whereW(x,t) is a normalized probability distribution dt
where
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Equation(3.2) can be recast in the following fashion: 1 [dW,)\2 N
HZJW — X, (3.10
dQ P ' IR?) o\ 90
d_:_ JR—(DIWl)d X_fWZDi d™x
t X OXi and make reference to the definitith1) of Q together with
52 7*(R?) the inequality(3.7). It is clear that, after identification df)
+2f Rm(Dijwl)de— WZDijmde, W, with (dW,/96) and (ii) W, with W,, one has
1OA] 177
A dl d (1 Wy [ 1 oW,
N i WHDW(WT; a—x(ww) "
so that, after integrating by parts the second term on the P 1 e (3.11)
right-hand sidgrhs) of (3.4), which allows for the cancella- ’
tior_1 of the first two terms on that side of the equation, wegg that[cf. Eq. (2.4)]
arrive at
dl
dQ 52 #*(R?) “ %<0 (3.12
X G N AR ON <0, .
T 2 R(?xi(?xj(D”Wl)d X W,Dj; I%,0%, d™x dt
92 " 2 " our main result.
ZZJ Rm(DijW]_)d X—2 W]_Dijmd X
IV. FISHER’S INFORMATION AND SYMMETRIES
IR IR i
_Zf W2Dij g Kd”x, 3.5 OF THE FOKKER-PLANCK EQUATION
i O4

Fisher’s informatior 4 is generally thought of in connec-
and thus, after cancelling the first two terms on the rightion with the problem of estimating the actual value of the
hand sidgthe second one must be fifswice) integrated by ~Paramete® [10], assuming théorm of the appropriate prob-
parts. Here we assume that in both cases the “integrated@bility distribution Wy(x,t,;6) is known (although, of

parts vanish(see the Appendij to course, the precise value éfis unknown [10].
We will now assumethat the Fokker-Planck equation
dQ IR IR (2.1) is symmetrical with respect tsomechange of vari-
dar Zf 2Djj a_xi&_xjd X. (3.6) ables. In this important case, given a solutieg(x,t), it is

possible to build up in a natural fashion, on account of that
Now, sinceW,>0 and, of courseD;; is a definite posi- Symmetry, a monoparametric family of solutioRg(x,t, 6).

tive matrix, we are in a position to assert that This means that for Fokker-Planck equations that admit this
kind of symmetry, any solution belongs to a monoparametric
dQ<0 3.7) family of solutions. The existence of such a symmetry is a

sufficientcondition in order to build up the desired family of
solutions. Hencefor any solutionthe concomitant Fisher's
It is to be stressed that, in order to obtain the above ininformation verifies the correspondind theorem. Thus we
equality, the only assumption neededijsthat bothW; and  assums€(i) that a§-dependent point transformation
W, verify the FP equation, angi) that W,>0. Nothing is
presupposed concerning either normalization or the sign of X =X (Xg, ... XN 0) (i=1,...N), 4.1
Wl.
Let us consider now &amily of normalized probability exists such that, fof=0 the identity
distributionsW,=W,(x,t; 6), that depend upon a parameter
0, are of a definite positive character, aiadl of them) verify X=X (X, ... XN:0) (i=1,...N), (4.2
the Fokker-Planck equatiof2.1).
We differentiate the Fokker-Planck equation with respecholds and(ii) that our Fokker-Planck equation is of such a
to 6 type that, for any solutionFy(x,t), another solution
F4(x,t,0) exists given by

dt

J (awg) _ LW 38

20\ ot | ~ag'rPWo), 3.8 Fo(Xp, ... XNt ) =Fo(X], ... X{,t). 4.3
and, asLgp is a 6-independent linear operator, we have We expand now4.1) in a @ power series

d (W, J , .

il _ Xi =X+ 0ni(Xy, ... Xy)+--+ (i=1,...N),

(9t( 90 LFP( aan) , (39) i I i\AL N (44)
i.e., (IW,/36) is itselfa solution to the Fokker-Planck equa- \yhere
tion (although it is not necessarily a normalized, positive
definite one. ox!

This is the point at which Fisher’'s information measure m:(a_el) (i=1,...N), (4.5

makes its appearance. We write it in the form 0=0
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and introduce the “infinitesimal transformation generator” dl, F(InW) | 2
v _ <0. .
[11] at f —Z dx=<0 (5.5
K=y 4.6
B 77ié'_xi' (4.6 B. Liouville equation
It is seen that TheN-dimensional situation in which the diffusion tensor
, vanishes identically translates itself into the equation
aF,,} X, dFy  dFg . @
2 TlZal e iy~ XFo. - IW d
a0 9=0 a0 0=0 X X; W:_K(Diw)’ (5.6)
so that the Fisher information measure associated to the pa- I ) o _
rameterd is given by that corresponds to the generalized Liouville equation de-

scribing the temporal evolution of an “ensemble” of solu-
tions of the deterministic dynamical syst¢a?]

1 .
|0[FO]=fF—(XFO)2de. (4.9
0 Xi=Di(Xq, ... Xn), (5.7
One gathers fronf3.12) that, associated to any symmetry ) L
of the type prescribed by Eqé&t.1), (4.2), and(4.3), a Fish- and has, of course, the form of an equation of continuity of
er's entropy(4.8) exists that verifies ahl theorem: its tem-  [1OW-

poral derivative, for any Fokker-Planck solutién, is nega- It is clear that the present is a very important case, with
tive (or zerd. Indeed, with reference to Eq$3.11) and manifold applications. Symmetries of the type prescribed by

(3.12, we are now in a position to assert that equations(4.1), (4.2), and (4.3) are associated tfcf. Eq.
(3.11)] a conservedrisher information measure

i|9[F0]= Ef i(f(Fo)szx d d(1 -
dt dtJ Fo a(|f,[vv1)=af V—V(XW)Zde=O. (5.8
Jd (1 - d (1 -
= —Zf FoDin(F_(XFO))K<F_(XFO))C{NX The essential reason for the vanishing of the time deriva-
o o tive of Fisher’s information can be here attributed to the fact
<0. (4.9 that our tensoD fulfills the equalityD;;=0.

i ) The behavior of , is to be compared to that of Shannon’s
We see that when the Fokker-Planck equation admits ntropy

symmetry related to a transformation of the fo(fhl), we
can computedi/dt in terms of the infinitesimal transforma-
tion generatorX, which constitutes the second interesting
result of the present communication.

s=—fw InWdNx. (5.9

It is known that[12]

V. EXAMPLES ds 6Di
= f dNx— (5.10

A. Wiener process dt X’

We tackle here the one-dimensioriaD) instance withi) ~ Thus the sign ofiS/dt depends upon the sign of the diver-
null drift coefficient and(ii) constant diffusion coefficient gence of the vectoD;(x). Hence, it is plain thatl Sdt will
(D>0), i.e., the so-called Wiener proce®y. The associ- grow with time only for those dynamical systems that have a
ated Fokker-Planck equation adopts the form of a diffusiompositive phase flow divergence. If this is not the c&may

equation either remain constant, decredfleis happens in the case of
OW W abstract dynamical systenieon-Hamiltonian onéscharac-
——=D——. (5.1 terized by a phase space flux with negative divergence. As a
at I°x trivial example, consider the one-dimensional dynamical sys-

Equation (5.1) admits of translational symmetry. Given tem (dx/dt)=—x, that possesses an atractor at the origin. It
any solution W(x,t), a whole family of solutions IS clear that here the entropy of the pertinent ensemble of

W(x+ 6,t) ensues, associated to the point symmetry identical systems diminishes as time goeg by exhibit a
, nonmonotonous temporal behavidr2]. All these types of
Xi =X+ 0, (5.2 behavior can take place in the casenoih-Hamiltonian dy-

namical systemdn the particular case of Hamiltonian sys-

whose generator is given b
g g y tems we have a divergenceless flow, so thgtdt=0. Here

o d we find the essentials of the well-known result that, for
X= ox’ (53 Hamiltonian systems in the fine-grained description, entropy
: . , does not change with time.
The concomitant Fisher's entropy reads Moreover,S is only conserved in the case of divergence-
1/ oW\ ?2 less flows. On the other hand, the Fisher information mea-
[ W]= f V_V< 5) dx, (5.4  sures associated to symmetries of the Liouville equation are

alwaysconservedeven for other types of flow Thus Fish-
and, from Eq.(4.9), er's information may be useful in studying the behavior of
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with conservation laws associated to symmetries of the equa-

tion.

A simple illustration is provided by the free particle in

one dimension. We have

X= % (5.11)
p=0, (5.12
and the associated Liouville equation is
W =— paW. (5.13
ot m gx

Now, letW(x,p,t) be a solution of this Liouville equation. It
is apparent thatV(x+ 6,p,t) is also a solution. Thus we are

in a position to write dowricf. Eq. (5.8)] the Fisher’'s en-

tropy
1/oW
Il[W]:fV_V X

VI. CONCLUSIONS

2
dx dp=const.

(5.19

We have derived here tw@elated results, namely(i) to
any family of probability distributionsVy(x,t;6) that are
solutions to the Fokker-Planck equatihl) we can associ-
ate a Fisher information measurgwhose temporal deriva-
tive has a definite sigfcf. Eq. (3.12]. This constitutes a
concrete implementation of Frieden’s arrow of time

More specifically,(ii) associated to any symmetry of the

type prescribed by Eqs4.1), (4.2, and (4.3, a Fisher's
entropy(4.8) exists that verifies ahl theorem: its temporal
derivative, for any Fokker-Planck solutiéh, is negativeor
zerog.
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solutions of the Liouville equation, because it provides one
J V.| W.D- V

g
dNx=li JWDV W -da=0,
rTl ! W2 &=
(A2)
f V. (U—)d” —|Ime— da=0, (A3)
r—o

whereU stands for theN-dimensional vector of components
d(W.Dj)/9X;, i=1,... N, Sis an N—1)-dimensional
hypersphere of radius centered at the origin andld is the
associated differential surface element

The boundary condition@.1)—(A.3) are quite reasonable
in the case of exponential solutions to the FP equation. In
general, we can expect solutions of the fdfior the sake of
simplicity we discuss the 1D case

W(x,t,0)=f(x,t,0)e 9xtL0, (A4)

whered is the parameteialredy introducegicharacterizing a
monoparametric family of solutions. Remembering the deri-
vation of Eqs.(3.11)—(3.12, we have

M-ty A5
:

_t_ r_ AV4

W= (e (A6)

where the “prime” stands for partial differentiation with re-
spect to the parametek. If we assume that the functiorfs
and g are, for instance, polynomials, we see that the inte-
grands in Egs(A.1)—(A.3) have the form of a rational func-
tion times the decreasing exponent&l?, and the limits
appearing in the rhs of those equations vanish. A similar
argument can be given if we have solutions that are linear
combinations of functions of the forrfA.4). Note that the

The research of A. Plastino is partially supported by the'eduirenments imposed by Eq#.1)—(A.3) are quite similar

National Research CoundiCONICET) of Argentina.

APPENDIX

In the derivation of EQ.(3.6) we assume that for
[X|—2, Wy ,—0 fast enough that
2 2

Wi dNx= | Wi d
fV Wsz _rTZJSW Vp-da=0, (A1)

to those corresponding to the convergence of the integral
defining Fisher’ information, since

1 !
|e=f;(f —fg

This means that Eq$A.1)—(A.3) do not seem to impose
stronger conditions than the very existence of Fisher infor-
mation’s integrall ,.

")2e 9, (A7)
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