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We give here a concrete illustration of Frieden’s arrow of time, connected with Fisher’s information mea-
sure. It is shown that this arrow of time is related to symmetries of the Fokker-Planck equation.
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I. INTRODUCTION

In recent years, Frieden has shown that Fisher’s informa-
tion measure~FIM! can be regarded as an important tool for
interesting developments in theoretical physics@1–8#.
Among them, one may cite the possible existence of an ‘‘ar-
row of time’’ associated to this information measure, which
following current usage we denote byI . Indeed, in discuss-
ing Brownian motion, Frieden@7# has put forward suggestive
qualitative considerations regarding a putative FIM based
‘‘H-theorem.’’

Strongindirect evidence for the existence of an arrow of
time has been put forward by Frieden@7#. ~i! Assuming that
Fisher’sI decreases with time after a measurenment is made
implies thatI approaches a variational minimum@7#. Thus
the information distance called (I2J) in @7# approaches an
extremum, which, in turn, leads to the relativistic quantum
mechanics formalism„Eqs.~17!–~28! of Ref. @7#…. ~ii ! Under
the same assumption, several important physical laws can be
rederived@1–7#.

These logical developements constitute the motivation for
the present search for adirectdemonstration of the existence
of a Fisher’s information-based arrow of time. As far as we
know, no analytical demonstration has been advanced show-
ing that, for a system governed by a given probability distri-
butionW(x,t), (dI/dt) possesses adefinitesign, so that an
H theorem ensues and, with it, an ‘‘arrow of time.’’ In this
report we show that the Fokker-Planck equation admits, un-
der appropriate circumstances, of Fisher entropies~i.e.,
FIM’s! that verify anH theorem. Moreover, it is seen that
Fisher entropies whose temporal derivatives have a definite
sign are related to symmetries of the Fokker-Planck~FP!
equation.

II. THE FOKKER-PLANCK OPERATOR

We shall focus our attention on FP equations@9#

]W

]t
5LFPW, ~2.1!

whereW(x,t) is a normalized probability distribution

E W~x,t !dNx5 1, ~2.2!

x is a vector belonging toRN, and the FP operator@9# is
given, in terms of a drift vectorVD of componentsDi(x,t)
and of a diffusion tensorD of componentsDi j (x,t), by ~Ein-
stein convention used!

LFP52
]

]xi
Di~x,t !1

]2

]xi]xj
Di j ~x,t !. ~2.3!

TheDi j (x,t) matrix is assumed to be a symmetric positive
definite one, i.e.,

Di jv iv j> 0, ~2.4!

for all vectorsv in RN. It is convenient to introduce at this
point the adjoint operatorLFP

1 defined according to

LFP
1 5Di

]

]xi
1Di j

]2

]xi]xj
. ~2.5!

Given two probability distributionsW1 andW2, ourL opera-
tors verify

E W1~LFPW2!d
Nx5E W2~LFP

1 W1!d
Nx. ~2.6!

III. FISHER ENTROPIES WHOSE TEMPORAL
DERIVATIVES HAVE A DEFINITE SIGN

Associated with any pair of solutionsW1(x,t) and
W2(x,t) to the Fokker-Planck equation, we introduce the
auxiliary quantityQ

Q5E dNxW1
2W2

21 , ~3.1!

and immediately find

dQ

dt
52E R~LFPW1!d

Nx2E W2~LFP
1 R2!dNx, ~3.2!

where

R5
W1

W2
. ~3.3!
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Equation~3.2! can be recast in the following fashion:

dQ

dt
522E R

]

]xi
~DiW1!d

Nx2E W2Di

]~R2!

]xi
dNx

12E R
]2

]xi]xj
~Di jW1!d

Nx2E W2Di j

]2~R2!

]xi]xj
dNx,

~3.4!

so that, after integrating by parts the second term on the
right-hand side~rhs! of ~3.4!, which allows for the cancella-
tion of the first two terms on that side of the equation, we
arrive at

dQ

dt
52E R

]2

]xi]xj
~Di jW1!d

Nx2E W2Di j

]2~R2!

]xi]xj
dNx

52E R
]2

]xi]xj
~Di jW1!d

Nx22E W1Di j

]2R

]xi]xj
dNx

22E W2Di j

]R

]xi

]R

]xj
dNx, ~3.5!

and thus, after cancelling the first two terms on the right-
hand side@the second one must be first~twice! integrated by
parts. Here we assume that in both cases the ‘‘integrated’’
parts vanish~see the Appendix!# to

dQ

dt
522E W2Di j

]R

]xi

]R

]xj
dNx. ~3.6!

Now, sinceW2.0 and, of course,Di j is a definite posi-
tive matrix, we are in a position to assert that

dQ

dt
<0. ~3.7!

It is to be stressed that, in order to obtain the above in-
equality, the only assumption needed is~i! that bothW1 and
W2 verify the FP equation, and~ii ! thatW2.0. Nothing is
presupposed concerning either normalization or the sign of
W1.

Let us consider now afamily of normalized probability
distributionsWu5Wu(x,t;u), that depend upon a parameter
u, are of a definite positive character, and~all of them! verify
the Fokker-Planck equation~2.1!.

We differentiate the Fokker-Planck equation with respect
to u

]

]uS ]Wu

]t D5
]

]u
~LFPWu!, ~3.8!

and, asLFP is a u-independent linear operator, we have

]

]tS ]Wu

]u D5LFPS ]

]u
WuD , ~3.9!

i.e., (]Wu /]u) is itselfa solution to the Fokker-Planck equa-
tion ~although it is not necessarily a normalized, positive
definite one!.

This is the point at which Fisher’s information measure
makes its appearance. We write it in the form

I u5E 1

Wu
S ]Wu

]u D 2dNx, ~3.10!

and make reference to the definition~3.1! of Q together with
the inequality~3.7!. It is clear that, after identification of~i!
W1 with (]Wu /]u) and ~ii ! W2 with Wu , one has

dIu
dt

522E WuDi j

]

]xi
S 1

Wu

]Wu

]u D ]

]xj
S 1

Wu

]Wu

]u DdNx,
~3.11!

so that@cf. Eq. ~2.4!#

dIu
dt

<0, ~3.12!

our main result.

IV. FISHER’S INFORMATION AND SYMMETRIES
OF THE FOKKER-PLANCK EQUATION

Fisher’s informationI u is generally thought of in connec-
tion with the problem of estimating the actual value of the
parameteru @10#, assuming theformof the appropriate prob-
ability distribution Wu(x,t,;u) is known ~although, of
course, the precise value ofu is unknown! @10#.

We will now assumethat the Fokker-Planck equation
~2.1! is symmetrical with respect tosomechange of vari-
ables. In this important case, given a solutionF0(x,t), it is
possible to build up in a natural fashion, on account of that
symmetry, a monoparametric family of solutionsFu(x,t,u).
This means that for Fokker-Planck equations that admit this
kind of symmetry, any solution belongs to a monoparametric
family of solutions. The existence of such a symmetry is a
sufficientcondition in order to build up the desired family of
solutions. Hence,for any solutionthe concomitant Fisher’s
information verifies the correspondingH theorem. Thus we
assume~i! that au-dependent point transformation

xi85xi8~x1 , . . . ,xN ;u! ~ i51, . . . ,N!, ~4.1!

exists such that, foru50 the identity

xi5xi8~x1 , . . . ,xN ;0! ~ i51, . . . ,N!, ~4.2!

holds and~ii ! that our Fokker-Planck equation is of such a
type that, for any solutionF0(x,t), another solution
Fu(x,t,u) exists given by

Fu~x1 , . . . ,xN ,t;u!5F0~x18 , . . . ,xN8 ,t !. ~4.3!

We expand now~4.1! in a u power series

xi85xi1uh i~x1 , . . . ,xN!1••• ~ i51, . . . ,N!,
~4.4!

where

h i5S ]xi8

]u D
u50

~ i51, . . . ,N!, ~4.5!
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and introduce the ‘‘infinitesimal transformation generator’’
@11#

X̂5h i

]

]xi
. ~4.6!

It is seen that

F]Fu

]u G
u50

5F]xi8

]u G
u50

]F0

]xi
5h i

]F0

]xi
5X̂F0 , ~4.7!

so that the Fisher information measure associated to the pa-
rameteru is given by

I u@F0#5E 1

F0
~X̂F0!

2dNx. ~4.8!

One gathers from~3.12! that, associated to any symmetry
of the type prescribed by Eqs.~4.1!, ~4.2!, and~4.3!, a Fish-
er’s entropy~4.8! exists that verifies anH theorem: its tem-
poral derivative, for any Fokker-Planck solutionF0, is nega-
tive ~or zero!. Indeed, with reference to Eqs.~3.11! and
~3.12!, we are now in a position to assert that

d

dt
I u@F0#5

d

dtE 1

F0
~X̂F0!

2dNx

522E F0Di j

]

]xi
S 1F0

~X̂F0! D ]

]xj
S 1F0

~X̂F0! DdNx
<0. ~4.9!

We see that when the Fokker-Planck equation admits a
symmetry related to a transformation of the form~4.1!, we
can computedI/dt in terms of the infinitesimal transforma-
tion generatorX̂, which constitutes the second interesting
result of the present communication.

V. EXAMPLES

A. Wiener process

We tackle here the one-dimensional~1D! instance with~i!
null drift coefficient and~ii ! constant diffusion coefficient
(D.0), i.e., the so-called Wiener process@9#. The associ-
ated Fokker-Planck equation adopts the form of a diffusion
equation

]W

]t
5D

]2W

]2x
. ~5.1!

Equation ~5.1! admits of translational symmetry. Given
any solution W(x,t), a whole family of solutions
W(x1u,t) ensues, associated to the point symmetry

xi85xi1u, ~5.2!

whose generator is given by

X̂5
]

]x
. ~5.3!

The concomitant Fisher’s entropy reads

I u@W#5E 1

WS ]W

]x D 2dx, ~5.4!

and, from Eq.~4.9!,

dIu
dt

522 E DWS ]2~ lnW!

]x2 D 2dx<0. ~5.5!

B. Liouville equation

TheN-dimensional situation in which the diffusion tensor
vanishes identically translates itself into the equation

]W

]t
52

]

]xi
~DiW!, ~5.6!

that corresponds to the generalized Liouville equation de-
scribing the temporal evolution of an ‘‘ensemble’’ of solu-
tions of the deterministic dynamical system@12#

ẋi5Di~x1 , . . . ,xN!, ~5.7!

and has, of course, the form of an equation of continuity of
flow.

It is clear that the present is a very important case, with
manifold applications. Symmetries of the type prescribed by
equations~4.1!, ~4.2!, and ~4.3! are associated to@cf. Eq.
~3.11!# a conservedFisher information measure

d

dt
~ I u@W# !5

d

dtE 1

W
~X̂W!2dNx50. ~5.8!

The essential reason for the vanishing of the time deriva-
tive of Fisher’s information can be here attributed to the fact
that our tensorD fulfills the equalityDi j50.

The behavior ofI u is to be compared to that of Shannon’s
entropy

S52E W lnWdNx. ~5.9!

It is known that@12#

dS

dt
5E dNx

]Di

]xi
. ~5.10!

Thus the sign ofdS/dt depends upon the sign of the diver-
gence of the vectorDi(x). Hence, it is plain thatdS/dt will
grow with time only for those dynamical systems that have a
positive phase flow divergence. If this is not the case,Smay
either remain constant, decrease@this happens in the case of
abstract dynamical systems~non-Hamiltonian ones! charac-
terized by a phase space flux with negative divergence. As a
trivial example, consider the one-dimensional dynamical sys-
tem (dx/dt)52x, that possesses an atractor at the origin. It
is clear that here the entropy of the pertinent ensemble of
identical systems diminishes as time goes by# or exhibit a
nonmonotonous temporal behavior@12#. All these types of
behavior can take place in the case ofnon-Hamiltonian dy-
namical systems.In the particular case of Hamiltonian sys-
tems we have a divergenceless flow, so thatdS/dt50. Here
we find the essentials of the well-known result that, for
Hamiltonian systems in the fine-grained description, entropy
does not change with time.

Moreover,S is only conserved in the case of divergence-
less flows. On the other hand, the Fisher information mea-
sures associated to symmetries of the Liouville equation are
alwaysconserved~even for other types of flow!. Thus Fish-
er’s information may be useful in studying the behavior of
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solutions of the Liouville equation, because it provides one
with conservation laws associated to symmetries of the equa-
tion.

A simple illustration is provided by the free particle in
one dimension. We have

ẋ5
p

m
, ~5.11!

ṗ50, ~5.12!

and the associated Liouville equation is

]W

]t
52

p

m

]W

]x
. ~5.13!

Now, letW(x,p,t) be a solution of this Liouville equation. It
is apparent thatW(x1u,p,t) is also a solution. Thus we are
in a position to write down@cf. Eq. ~5.8!# the Fisher’s en-
tropy

I 1@W#5E 1

WS ]W

]x D 2dx dp5const. ~5.14!

VI. CONCLUSIONS

We have derived here two~related! results, namely,~i! to
any family of probability distributionsWu(x,t;u) that are
solutions to the Fokker-Planck equation~2.1! we can associ-
ate a Fisher information measureI u whose temporal deriva-
tive has a definite sign@cf. Eq. ~3.12!#. This constitutes a
concrete implementation of Frieden’s arrow of time.

More specifically,~ii ! associated to any symmetry of the
type prescribed by Eqs.~4.1!, ~4.2!, and ~4.3!, a Fisher’s
entropy~4.8! exists that verifies anH theorem: its temporal
derivative, for any Fokker-Planck solutionF0, is negative~or
zero!.
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APPENDIX

In the derivation of Eq. ~3.6! we assume that for
uxu→`, W1,2→0 fast enough that

E “•SW1
2

W2
VDDdNx5 lim

r→`
E
S

W1
2

W2
VD•da50, ~A1!

E “•FW1D•“SW1

W2
D GdNx5 lim

r→`
E
S
W1D•“SW1

W2
D •da50,

~A2!

E “•SUW1

W2
DdNx5 lim

r→`
E
S
U
W1

W2
•da50, ~A3!

whereU stands for theN-dimensional vector of components
](W1Dji )/]Xj , i51, . . . ,N, S is an (N21)-dimensional
hypersphere of radiusr centered at the origin and (da is the
associated differential surface element!.

The boundary conditions~A.1!–~A.3! are quite reasonable
in the case of exponential solutions to the FP equation. In
general, we can expect solutions of the form~for the sake of
simplicity we discuss the 1D case!

W~x,t,u!5 f ~x,t,u!e2g~x,t,u!, ~A4!

whereu is the parameter~alredy introduced! characterizing a
monoparametric family of solutions. Remembering the deri-
vation of Eqs.~3.11!–~3.12!, we have

W1

W2
5
1

f
~ f 82 f g8!, ~A5!

W1
2

W2
5
1

f
~ f 82 f g8!2, ~A6!

where the ‘‘prime’’ stands for partial differentiation with re-
spect to the parameteru. If we assume that the functionsf
and g are, for instance, polynomials, we see that the inte-
grands in Eqs.~A.1!–~A.3! have the form of a rational func-
tion times the decreasing exponentiale2g, and the limits
appearing in the rhs of those equations vanish. A similar
argument can be given if we have solutions that are linear
combinations of functions of the form~A.4!. Note that the
requirenments imposed by Eqs.~A.1!–~A.3! are quite similar
to those corresponding to the convergence of the integral
defining Fisher’ information, since

I u5E 1

f
~ f 82 f g8!2e2g. ~A7!

This means that Eqs.~A.1!–~A.3! do not seem to impose
stronger conditions than the very existence of Fisher infor-
mation’s integralI u .
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